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UNIT-2 

CO1:  To understand the basic concept of mode of heat transfer. 

CO2:  To apply non-dimensional numbers to evaluate and validate heat transfer parameters. 

CO-3: To analyze the complex problems of heat transfer with proper boundary conditions. 
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Heat transfer from extended surfaces 

 
 Heat transfer between a solid surface and a moving fluid is governed by the Newton’s cooling law:  
 

q = hA(Ts- T) 
where Ts is the surface temperature and T is the fluid temperature. Therefore, to increase the 
convective heat transfer, one can  
Increase the temperature difference (Ts- T) between the surface and the fluid.  
Increase the convection coefficient h. This can be accomplished by increasing the fluid flow over 
the surface since h is a function of the flow velocity and the higher the velocity, the higher the h. 
Example: a cooling fan.  
 
Increase the contact surface area A. Example: a heat sink with fins.  
Many times, when the first option is not in our control and the second option (i.e. increasing h) is 
already stretched to its limit, we are left with the only alternative of increasing the effective surface 
area by using fins or extended surfaces. Fins are protrusions from the base surface into the cooling 
fluid, so that the extra surface of the protrusions is also in contact with the fluid. Most of you have 
encountered cooling fins on air-cooled engines (motorcycles, portable generators, etc.), electronic 
equipment (CPUs), automobile radiators, air conditioning equipment (condensers). 
 
In the study of heat transfer, fins are surfaces that extend from an object to increase the rate of heat 
transfer to or from the environment by increasing convection. The amount 
of conduction, convection, or radiation of an object determines the amount of heat it transfers. 
Increasing the temperature gradient between the object and the environment, increasing the 
convection heat transfer coefficient, or increasing the surface area of the object increases the heat 
transfer. Sometimes it is not feasible or economical to change the first two options. Thus, adding a 
fin to an object, increases the surface area and can sometimes be an economical solution to heat 
transfer problems. 
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Consider the cooling fin shown below: 
 

h, 
T


Ts, Ac 

 

 
L 

 
 
 

The fin is situated on the surface of a hot surface at Ts and surrounded by a coolant at 
temperature T, which cools with convective coefficient, h. The fin has a cross sectional  area, 
Ac, (This is the area through with heat is conducted.) and an overall length, L. 

 
Note that as energy is conducted down the length of the fin, some portion is lost, by convection, 
from the sides. Thus the heat flow varies along the length of the fin. 

 
We further note that the arrows indicating the direction of heat flow point in both the x and y 
directions. This is an indication that this is truly a two- or three-dimensional heat flow, 
depending on the geometry of the fin. However, quite often, it is convenient to analyse a fin by 
examining an equivalent one–dimensional system. The equivalent system will involve the 
introduction of heat sinks (negative heat sources), which remove an amount of energy 
equivalent to what would be lost through the sides by convection. 

 
Consider a differential length of the fin. 

 

h, 
T





T0, 

q 
 

x 

 
 
 

 
Across this segment the heat loss will be h(Px)(T-T), where P is the perimeter around the 

fin.   

 
y 
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Equating the heat source to the convective loss: 

 h  P  T  T 


c 

 

 

Substitute this value into the General Conduction Equation as simplified for One-Dimension, 
Steady State Conduction with Sources, where m is 

 
 

 
 

then  

 
m2   

h  P 
k  Ac 

 
 

 

dx2
  m2    0  

A 
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This equation is a Second Order, Homogeneous Differential Equation. 
 
 

Solution of the Fin Equation 
 

We apply a standard technique for solving a second order homogeneous linear differential 
equation. 

 
Try  = ex. Differentiate this expression twice: 

d 
dx 

d 2

dx2
 

   e  x
 

 

  2  e x
 

 
 

 
 

 

 

Substitute this trial solution into the differential equation: 
 

2ex  – m2ex = 0  

Equation  provides the following relation: 
 

 =   m  
 

We now have two solutions to the equation. The general solution to the above differential 
equation will be a linear combination of each of the independent solutions. 

 

Then:  
 = Aemx + B e-mx  

 

where A and B are arbitrary constants which need to be determined from the boundary 
conditions. Note that it is a 2nd order differential equation, and hence we need two boundary 
conditions to determine the two constants of integration. 

 
An alternative solution can be obtained as follows: Note that the hyperbolic sin, sinh, the 
hyperbolic cosine, cosh, are defined as: 

 

 
sinh(m x) 

emx   emx 

2 
cosh(m x) 

emx    emx  

2 
 

 

We may write: 
 

C  cosh(m x)  D  sinh(m x)  C 



em x  e m x 

 
 

 D 



em x   e m x 

 
 

C  D 

 
 

 em x 



C  D 

 
 

 
 

 e m x  

2 2 2 2 
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We see that if (C+D)/2 replaces A and (C-D)/2 replaces B then the two solutions are 
equivalent. 

 

  C  cosh(m x)  D  sinh(m x) 

 

Generally the exponential solution is used for very long fins, the hyperbolic solutions for 
other cases. 
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Boundary Conditions: 
 

Since the solution results in 2 constants of integration we require 2 boundary conditions. The 
first one is obvious, as one end of the fin will be attached to a hot surface and will come into 
thermal equilibrium with that surface. Hence, at the fin base, 

 
(0) = T0 - T  0  

 
The second boundary condition depends on the condition imposed at the other end of the fin. 
There are various possibilities, as described below. 

 
Very long fins: 

For very long fins, the end located a long distance from the heat source will approach the 
temperature of the surroundings. Hence, 

 
() = 0  

 
Substitute the second condition into the exponential solution of the fin equation: 

 

 0 

() = 0 = Aem + B e-m  
 

The first exponential term is infinite and the second is equal to zero. The only way that this 
equation can be valid is if A = 0. Now apply the second boundary condition. 

 
(0) =  0 = B e-m0  B = 0  

The general temperature profile for a very long fin is then: 
 

(x) =  0  e-mx  

If we wish to find the heat flow through the fin, we may apply Fourier Law: 
 

q   k  A  
dT  

  k  A  
d

 
c     dx c     dx 

 

Differentiate the temperature profile: 
 

d 

 

 
  



 m  emx  

 
 

 

o 
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 0) 

 
 
 

The insulated tip fin 

Assume that the tip is insulated and hence there is no heat transfer: 
 

d 
 0 

dx xL 

 
 

 

The solution to the fin equation is known to be: 
 

  C  cosh(m x)  D  sinh(m x) 

 
 

 

Differentiate this expression. 
 

d

dx 
 C  m sinh(m x)  D  m cosh(m x)  

 

Apply the first boundary condition at the base: 
0 1 

 (0)  0  C sinh(m  0)  D cosh(m 

 

 

So that D = 0. Now apply the second boundary condition at the tip to find the value of C: 
 

d 
(L)  0  Cm sinh(m  L)  

dx 
0 m cosh(m  L)  

 

which requires that  
 

C  




cosh(mL) 
 

 

0  sinh(mL) 

 
 

 
 

This leads to the general temperature profile: 
 

 ( x)  0 
cosh m(L  x) cosh(mL) 
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We may find the heat flow at any value of x by differentiating the temperature profile and 
substituting it into the Fourier Law: 

 

q   k  A  
dT

 
c     dx 

  k  A  
d


c     dx 
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h  P  k  A         m  L  

So that the energy flowing through the base of the fin is: 
 

q  hPkAc 0 tanh(mL)  M0 tanh(mL) 

 
If we compare this result with that for the very long fin, we see that the primary difference in 
form is in the hyperbolic tangent term. That term, which always results in a number equal to or 
less than one, represents the reduced heat loss due to the shortening of the fin. 

 
Other tip conditions: 

We have already seen two tip conditions, one being the long fin and the other being the 
insulated tip. Two other possibilities are usually considered for fin analysis: (i) a tip subjected 
to convective heat transfer, and (ii) a tip with a prescribed temperature. The expressions for 
temperature distribution and fin heat transfer for all the four cases are summarized in the  table 
below. 

 
 

 

Case Tip Condition Temp. Distribution Fin heat transfer 
A Convection heat 

transfer: 
h(L)=-k(d/dx)x=L 

cosh m(L  x)  (hmk) sinh m(L  x) 

cosh mL  (hmk) sinh mL 

sinh mL  (hmk) cosh mL 
Mo 

cosh mL  (hmk) sinh mL 

B Adiabatic 
(d/dx)x=L=0 

cosh m(L  x) 
 

cosh mL 
M0 tanh mL 

C Given temperature: 
(L)= L 

( L 
 ) sinh m(L  x)  sinh m(L  x) 

b 

sinh mL 

(cosh mL  L 
 ) 

M0 
b
 

sinh mL 

D Infinitely long fin 
(L)=0 

e mx M 0 

 
 
 

 
Fin Efficiency 

 
The fin efficiency is defined as the ratio of the energy transferred through a real fin to that 
transferred through an ideal fin. An ideal fin is thought to be one made of a perfect or infinite 
conductor material.  A perfect conductor has an infinite thermal conductivity so that the  entire 
fin is at the base material temperature. 

 

   
qreal    

qideal 

 
h   P  L  


 

L 
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Tb Tb
 

 
 
 

Real situation 
Ideal situation 

 
CONVECTION: 
 
 Main purpose of convective heat transfer analysis is to determine:  
  
Flow field, temperature field in fluid ,heat transfer coefficient, h  
 
Heat transfer through a solid is always by conduction, since the molecules of a solid remain at 
relatively fixed positions. Heat transfer through a liquid or gas, however, can be by conduction or 
convection, depending on the presence of any bulk fluid motion. Heat transfer through a fluid is by 
convection in the presence of bulk fluid motion and by conduction in the absence of it. Therefore, 
Conduction in a fluid can be viewed as the limiting case of convection, corresponding to the case 
of quiescent fluid 
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Convection classified in two types 

i) Natural convection 
ii)  Forced convection 

 

 

FORCED CONVECTION: 
 An internal flow is surrounded by solid boundaries that can restrict the development of its boundary layer, for 
example, a pipe flow. An external flow, on the other hand, are flows over bodies immersed in an unbounded 
fluid so that the flow boundary layer can grow freely in one direction. Examples include the flows over airfoils, 
ship hulls, turbine blades. 
 

 
 
Fluid particle adjacent to the solid surface is at rest  
• These particles act to retard the motion of adjoining layers  
• boundary layer effect  
 
Inside the boundary layer, we can apply the following conservation principles:  
Momentum balance: inertia forces, pressure gradient, viscous forces, body forces  
Energy balance: convective flux, diffusive flux, heat generation, energy storage 
 
 
 
 
 
FORCED CONVECTION CORRELATIONS: 
 
 

 
The heat transfer coefficient is a direct function of the temperature gradient next to the wall, 
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the physical variables on which it depends can be expressed as follows: 
h=f(fluid properties, velocity field ,geometry, temperature etc.) 

 
As the function is dependent on several parameters, the heat transfer coefficient is usually 
expressed in terms of correlations involving pertinent non-dimensional numbers. 

 
Forced convection: Non-dimensional groupings 

 
• Nusselt No. Nu = hx / k = (convection heat transfer strength)/ 

(conduction heat transfer strength) 
• Prandtl No. Pr = / = (momentum diffusivity)/ (thermal diffusivity) 
• Reynolds No. Re = U x /  = (inertia force)/(viscous force) 

Viscous force provides the dampening effect for disturbances in the fluid. If dampening is 
strong enough  laminar flow 
Otherwise, instability  turbulent flow  critical Reynolds number 

 
For forced convection, the heat transfer correlation can be expressed as 

Nu=f (Re, Pr) 
The convective correlation for laminar flow across a flat plate heated to a constant wall 

temperature is: 

 

x 

 

Nux = 0.323·Rex
½ · Pr1/3 

 

where  
Nux  hx/k 

Rex  (Ux)/

Pr  cP/k 
 

 
PHYSICAL MEANING OF PRANDTL NUMBER 
 

The Prandtl number was introduced earlier. 

If we multiply and divide the equation by the fluid density, , we obtain: 

Pr  (/)/(k/cP) = /

The Prandtl number may be seen to be a ratio reflecting the ratio of the rate that viscous forces 
penetrate the material to the rate that thermal energy penetrates the material. As a consequence 
the Prandtl number is proportional to the rate of growth of the two boundary layers: 

U
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/t = Pr1/3 
 
PHYSICAL MEANING OF NUSSELT NUMBER 

 
The Nusselt number may be physically described as well. 

Nux  hx/k 

If we recall that the thickness of the boundary layer at any point along the surface, , is also a 
function of x then 

Nux  h/k  (/kA)/(1/hA) 

We see that the Nusselt may be viewed as the ratio of the conduction resistance of a material 
to the convection resistance of the same material. 

 
Students, recalling the Biot number, may wish to compare the two so that they may distinguish 
the two. 

Nux  hx/kfluid Bix  hx/ksolid 

The denominator of the Nusselt number involves the thermal conductivity of the fluid at the 
solid-fluid convective interface; the denominator of the Biot number involves the thermal 
conductivity of the solid at the solid-fluid convective interface. 

 

NUMERICAL: 

 
1. Engine oil at 600C flows over the upper surface of a 5-m-long flat plate whose temperature is 200C 

with a velocity of 2 m/s in following figure. Determine the total drag force and the rate of heat 
transfer per unit width of the entire plate. 

 

 

Solution:  Engine oil flows over a flat plate. The total drag force and the rate of heat transfer per unit 
width of the plate are to be determined  
1 The flow is steady and incompressible. 2 The critical Reynolds number is Re = 5 × 105 
 The properties of engine oil at the film temperature of Tf =  (Ts + T )/2= (20+60)/2 =400C  
are  ρ =876 kg/m3 , Pr= 2962,k=0.1444 W/m.K ,v =2.485 10 -4 m2/s 
Noting that L =5 m,  
The Reynolds number at the end of the plate is  
                                    ReL =VL/ v 
                                            = (2 × 5) / 2.485 × 10-4   
                                            = 4.024 × 104 
Which is less than the critical Reynolds number. Thus we have laminar flow over the entire plate, and the 
average friction coefficient is 
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 Cf   =1.33 ReL
20.5 

                          =1.33 3 (4.024 × 104)20.5 
                 = 0.00663 
Noting that the pressure drag is zero and thus CD=Cf for parallel flow over a flat plate, the drag force 
acting on the plate per unit width becomes 
FD =Cf A(ρV2/2) 
      =0.00663(5×1 m2) (876 kg/m3)(2 m/s)2 

                                                     ------------------------------------- 
                                                  2 
      =58.1 N 
The total drag force acting on the entire plate can be determined by multiplying the value obtained above 
by the width of the plate. 
The Nusselt number is determined using the laminar flow relations 
for a flat plate, 
Nu=hL/k 
     =0.664 ReL

0 .5 Pr1/3  
     =0.664 3 (4.024 ×104)0.5 × 29621/3  
     =1913 
Then,h =(kNu)/(LK)= 50.1444 W/m·K 
             =55.25 W/m2·K 
And Q =hAs(T`-Ts) 
            =(55.25 )(5)(60-20)0C  
           =11,050 W 
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